材料と環境 Vol. 67 (2018), No. 5
Backnumber
-
Vol. 73 (2024)
-
Vol. 72 (2023)
-
Vol. 71 (2022)
-
Vol. 70 (2021)
-
Vol. 69 (2020)
-
Vol. 68 (2019)
-
Vol. 67 (2018)
-
Vol. 66 (2017)
-
Vol. 65 (2016)
-
Vol. 64 (2015)
-
Vol. 63 (2014)
-
Vol. 62 (2013)
-
Vol. 61 (2012)
-
Vol. 60 (2011)
-
Vol. 59 (2010)
-
Vol. 58 (2009)
-
Vol. 57 (2008)
-
Vol. 56 (2007)
-
Vol. 55 (2006)
-
Vol. 54 (2005)
-
Vol. 53 (2004)
-
Vol. 52 (2003)
-
Vol. 51 (2002)
-
Vol. 50 (2001)
-
Vol. 49 (2000)
-
Vol. 48 (1999)
-
Vol. 47 (1998)
-
Vol. 46 (1997)
-
Vol. 45 (1996)
-
Vol. 44 (1995)
-
Vol. 43 (1994)
-
Vol. 42 (1993)
-
Vol. 41 (1992)
-
Vol. 40 (1991)
キーワードランキング
21 Dec. (Last 30 Days)
材料と環境 Vol. 67 (2018), No. 5
Ⅲ.腐食の電気化学測定法の応用―水素透過―
坂入 正敏
pp. 191-196
DOI:
10.3323/jcorr.67.191抄録
The diffusible hydrogen in the metals plays an important role in the delayed failure and hydrogen embrittlement. Therefore, the focus is on detection of hydrogen permeated through the steel in this article. The detection of permeated hydrogen electrochemically(Devanathan-Stachurski double cell)is explained in detail. It also demonstrated that the application of micro-electrochemical cell to detected permeated hydrogen during wet/dry corrosion of scratch formed zinc coated steel.
Ⅲ.腐食の電気化学測定法の応用―マイクロ電気化学計測―
武藤 泉, 菅原 優, 原 信義
pp. 197-203
DOI:
10.3323/jcorr.67.197抄録
This paper presents an introduction of the polarization techniques using a micro-scale electrode area. It starts with the information about a capillary-based micro-electrochemical cell and a micro-scale electrode fabricated by a coating method, followed by several characteristic features and existing problems. Finally, the paper provides some applications of micro-scale polarization to corrosion research.
Al-Mg-Si-Cu系合金の糸錆成長に及ぼす析出物の影響
小澤 敬祐, 奥平 義弘, 尾嵜 心, 高田 悟, 漆原 亘, 有賀 康博, 松本 克史
pp. 208-210
DOI:
10.3323/jcorr.67.208抄録
The effect of precipitates on filiform corrosion (FFC) growth of coated Al-Mg-Si-Cu alloys with different coolings and chemical components was investigated using a cyclic corrosion test and dynamic polarization in an acid solution. Total FFC growth was accelerated by air cooling, while being suppressed by water quenching for high Cu contained Al alloy. Comparing water quenching with air cooling, cathodic current densities and the number of precipitates including Cu were lower after water quenching at high Cu contained Al alloy. These results suggest that suppression of precipitates including Cu improves FFC growth resistance of Al-Mg-Si-Cu alloys.
鉛フリー青銅CAC905の耐食性に関する検討
廣田 修平, 山田 浩士, 宮脇 幸代, 杉村 誠司, 廖 金孫
pp. 211-215
DOI:
10.3323/jcorr.67.211抄録
CAC 905 is a recently developed lead-free copper alloy composed of 15%Zn-2.5%Sn. In the present study, the corrosion resistance of CAC905 was evaluated and compared to the conventional lead-containing bronze CAC406 using salt water cyclic corrosion test (CCT), salt water spray test (SST) as well as the corrosion test for determination of dezincification resistance. It was found that CAC905 has an equal corrosion resistance to CAC406. Dezincification phenomenon was not observed in CAC905. Polarization test showed that the polarization curves of CAC905 in 3 mass% NaCl solution is similar to that of CAC406, supporting the corrosion test result that the corrosion resistance is almost the same for CAC905 and CAC406. SEM/EDS and XRD analyses conducted on CAC905 specimens after CCT for 240 hrs revealed that corrosion products of Zinc were deposited on the CAC905 alloy surface, which may depress the anodic reaction of CAC905 alloy.
鋼製杭の浅層土壌中における暴露試験
藤橋 健太, 奥地 誠, 押川 渡, 田原 晃, 篠原 正, 片山 英樹
pp. 216-221
DOI:
10.3323/jcorr.67.216抄録
The number of photovoltaic system has increased drastically due mainly to a profitable selling price of electricity for owners set by feed-in tariff. Metal piles are currently used as typical foundation of the system from the viewpoint of high workability and low cost. However, there is a problem that the corrosion rate of metal foundation pile at ground level is faster than that of other part of the pile. In this paper, soil corrosion at shallow layer was investigated by exposure test in soil, chemical analysis of soil and electrochemical analysis. The corrosion rate of metal pile in shallow soil layer was higher than 0.02 mm/year which is commonly recognized as the corrosion rate of metal in soil. The corrosion rate in shallow soil layer mostly increased with decreasing the polarization resistance measured in soil environment. Those investigated results showed that the macro cell corrosion at ground level is thought to be attributed to change of chemical composition caused by land creation and dispersion of manure.
酸素飽和高温高純度水中におけるSUS316Lステンレス鋼すき間内の局部腐食
相馬 康孝, 上野 文義
pp. 222-228
DOI:
10.3323/jcorr.67.222抄録
Localized corrosion in crevice of SUS316 stainless steel after immersion in 288℃ high purity water with dissolved oxygen concentration of 32 ppm for 100 h was analyzed. Two different types of localized corrosion initiated on grain boundary and inclusions. The former initiated on grain boundary and oxide grown into grain matrix. The oxidized area showed duplex structure composed of microcrystalline FeCr2O4 and island-shaped residual metals. The latter initiated on inclusions containing Ca and S and microcrystalline FeCr2O4 grown into metal matrix. These localized corrosion occurred selectively in oxygen depleted area indicated formation of macroscopic corrosion cell with the corroded area as anode and surrounding oxygenated area as cathode.
論文アクセスランキング
21 Dec. (Last 30 Days)
-
Wettability of CaS against molten iron at 1873 K
ISIJ International 早期公開
-
凝固過程における溶鋼中からAl2O3上へのMnSの晶出挙動
鉄と鋼 早期公開
-
-
In-situ Observation of Precipitation and Growth of MnS Inclusions during Solidification of a High Sulfur Steel
ISIJ International Vol.64(2024), No.14
-
-
モデル材料を用いた凝固過程における介在物生成挙動のその場観察
鉄と鋼 早期公開
-
Transition behavior of gas containing suspension from solid-like to liquid-like flows
ISIJ International 早期公開
-
-
Slag-steel reactions in the refining of Advanced High-Strength Steel
ISIJ International 早期公開
-
Chemical and Mechanical Factors on Phosphorus Dissolution Behavior from P-concentrated Slag
ISIJ International Vol.64(2024), No.14
この機能はログイン後に利用できます。
下のボタンをクリックしてください。