論文検索サイト

システム/制御/情報 Vol. 29 (2016), No. 10

ISIJ International
belloff
オンライン版ISSN: 2185-811X
冊子版ISSN: 1342-5668
発行機関: THE INSTITUTE OF SYSTEMS, CONTROL AND INFORMATION ENGINEERS (ISCIE)

Backnumber

  1. Vol. 37 (2024)

  2. Vol. 36 (2023)

  3. Vol. 35 (2022)

  4. Vol. 34 (2021)

  5. Vol. 33 (2020)

  6. Vol. 32 (2019)

  7. Vol. 31 (2018)

  8. Vol. 30 (2017)

  9. Vol. 29 (2016)

  10. Vol. 28 (2015)

  11. Vol. 27 (2014)

  12. Vol. 26 (2013)

  13. Vol. 25 (2012)

  14. Vol. 24 (2011)

  15. Vol. 23 (2010)

  16. Vol. 22 (2009)

  17. Vol. 21 (2008)

  18. Vol. 20 (2007)

  19. Vol. 19 (2006)

  20. Vol. 18 (2005)

  21. Vol. 17 (2004)

  22. Vol. 16 (2003)

  23. Vol. 15 (2002)

  24. Vol. 14 (2001)

  25. Vol. 13 (2000)

  26. Vol. 12 (1999)

  27. Vol. 11 (1998)

  28. Vol. 10 (1997)

  29. Vol. 9 (1996)

  30. Vol. 8 (1995)

  31. Vol. 7 (1994)

  32. Vol. 6 (1993)

  33. Vol. 5 (1992)

  34. Vol. 4 (1991)

  35. Vol. 3 (1990)

  36. Vol. 2 (1989)

  37. Vol. 1 (1988)

システム/制御/情報 Vol. 29 (2016), No. 10

パラメータ依存状態空間モデルに基づく蓄電池のSOC推定

大矢 将輝, 鷹羽 浄嗣, 林 磊, 石崎 龍, 河原林 直記, 福井 正博

pp. 433-440

抄録

This paper is concerned with the State-Of-Charge (SOC) estimation for lithium-ion batteries by using an equivalent circuit model and the extended Kalman filtering (EKF) technique. The physical parameters in the equivalent circuit are dependent on both the temperature and the SOC of the battery. We propose a new method for improving the estimation accuracy based on a parameter-dependent state-state space model. To be more specific, we derive a parameter-dependent state-space model by viewing these parameters as time-varying parameters,and then apply the extended Kalman filter to estimate the SOC. Experimental results demonstrate the effectiveness of the proposed method.

ブックマーク

SNSによる共有

論文タイトル

パラメータ依存状態空間モデルに基づく蓄電池のSOC推定

センサ搭載製品の設計のための使い方を考慮した機能検証法

森永 英二, 若松 栄史, 目賀 眞周, 荒井 栄司

pp. 441-447

抄録

Recent globalization in industries has increased the number of product failures and troubles caused by using them in unexpected ways. To avoid such troubles, it is necessary to verify whether the design plan can fulfill required functions when the product is utilized in various ways. From this point of view, the authors proposed a functional verification framework considering ways of use based on Petri net modeling and analysis of behavior of the product. However, it cannot be applied to products with sensors, since sensor faults could not be dealt with by the modeling method. This paper describes enhancement of the framework considering this problem. In the behavior modeling,some Petri net elements were introduced for representing difference between the information obtained by the sensors and the real information. This enabled the behavior model to represent sensor faults. In addition, another Petri net element that stands for a state in which the product should not be was also introduced. This made it possible to judge automatically whether an irregular phenomenon on the integrated model of behavior and physical phenomena results in a functional trouble. Application of the proposed method to an example of home cleaning robot proved its potential.

ブックマーク

SNSによる共有

論文タイトル

センサ搭載製品の設計のための使い方を考慮した機能検証法

アンサンブルカルマンフィルタ,粒子フィルタ,ガウシアン粒子フィルタについて

村田 眞哉, 平松 薫

pp. 448-462

抄録

In this paper, we clarify theoretical aspects of the representative non-Gaussian filters: the ensemble Kalman filter (EnKF) and the particle filter (PF). We first show that the EnKF is a realization algorithm of the linear optimal filter for nonlinear problems. We also show that under the Gaussian assumption for the predicted state, the EnKF provides a realization algorithm of the Gaussian filter. We next propose the multiple distribution estimation approach which is a novel framework for designing non-Gaussian filters and show that the PFs are special cases. We then propose a new PF algorithm to address the particle impoverishment problem inherent in the standard PF algorithms. We also show that by applying the proposed algorithm, we can improve the filtering accuracy of the Gaussian particle filter. We finally confirm the performance of each filter using two benchmark simulation models.

ブックマーク

SNSによる共有

論文タイトル

アンサンブルカルマンフィルタ,粒子フィルタ,ガウシアン粒子フィルタについて

この機能はログイン後に利用できます。
下のボタンをクリックしてください。

詳細検索

論文タイトル

著者

抄録

ジャーナル名

出版日を西暦で入力してください(4桁の数字)。

検索したいキーワードを入力して下さい