論文検索サイト

システム/制御/情報 Vol. 25 (2012), No. 5

ISIJ International
belloff
オンライン版ISSN: 2185-811X
冊子版ISSN: 1342-5668
発行機関: THE INSTITUTE OF SYSTEMS, CONTROL AND INFORMATION ENGINEERS (ISCIE)

Backnumber

  1. Vol. 37 (2024)

  2. Vol. 36 (2023)

  3. Vol. 35 (2022)

  4. Vol. 34 (2021)

  5. Vol. 33 (2020)

  6. Vol. 32 (2019)

  7. Vol. 31 (2018)

  8. Vol. 30 (2017)

  9. Vol. 29 (2016)

  10. Vol. 28 (2015)

  11. Vol. 27 (2014)

  12. Vol. 26 (2013)

  13. Vol. 25 (2012)

  14. Vol. 24 (2011)

  15. Vol. 23 (2010)

  16. Vol. 22 (2009)

  17. Vol. 21 (2008)

  18. Vol. 20 (2007)

  19. Vol. 19 (2006)

  20. Vol. 18 (2005)

  21. Vol. 17 (2004)

  22. Vol. 16 (2003)

  23. Vol. 15 (2002)

  24. Vol. 14 (2001)

  25. Vol. 13 (2000)

  26. Vol. 12 (1999)

  27. Vol. 11 (1998)

  28. Vol. 10 (1997)

  29. Vol. 9 (1996)

  30. Vol. 8 (1995)

  31. Vol. 7 (1994)

  32. Vol. 6 (1993)

  33. Vol. 5 (1992)

  34. Vol. 4 (1991)

  35. Vol. 3 (1990)

  36. Vol. 2 (1989)

  37. Vol. 1 (1988)

システム/制御/情報 Vol. 25 (2012), No. 5

再スタートパーティクルの適応的タイプ選択を行う Multi-Swarm Particle Swarm Optimization

巽 啓司, 由上 隆士, 谷野 哲三

pp. 105-116

抄録

The particle swarm optimization method (PSO) is one of popular metaheuristic methods for global optimization. Although the PSO is simple and shows a good performance of finding a desirable solution, it is reported that almost all particles sometimes converge to an undesirable local minimum for some problems. Thus, many kinds of improved methods have been proposed to keep the diversity of the search process. In this paper, we propose a novel multi-type swarm PSO which uses two kinds of particles and multiple swarms including either kind of particles. All particles in each swarm search for solutions independently where the exchange of information between different swarms is restricted for the extensive exploration. In addition, the proposed model has the restarting system of particles which initializes a particle with a sufficiently small velocity by resetting its velocity and position, and adaptively selects the kind of the particle according to which kind of particles contribute to improvement of the objective function value. Furthermore, through some numerical experiments, we verify the abilities of the proposed model.

ブックマーク

SNSによる共有

論文タイトル

再スタートパーティクルの適応的タイプ選択を行う Multi-Swarm Particle Swarm Optimization

分布型触覚センサの高速触覚情報取得と触覚情報に基づいた物体操作

福井 航, 小林 太, 小島 史男, 中本 裕之, 前田 正, 今村 信昭, 白沢 秀則

pp. 117-125

抄録

Recently, a robotic hand with tactile sensors is developed all over the world. We also have developed a universal robot hand with tactile sensors and other sensors. Tactile sensors are very important for manipulating objects dexterously. However, array-type tactile sensor has many I/O, thus require much processing time. In this paper, we propose a hi-speed tactile sensing based on the genetic algorithm in order to measure the tactile information rapidly. The validity of the proposed method shows through some experiments. Moreover, a multi-object manipulation according to the tactile information is proposed.

ブックマーク

SNSによる共有

論文タイトル

分布型触覚センサの高速触覚情報取得と触覚情報に基づいた物体操作

オフラインでの特異値分解に基づく拘束条件付き非線形Receding Horizon制御の実時間アルゴリズム

赤山 慶太, 大塚 敏之

pp. 126-133

抄録

In this paper, a real-time algorithm for nonlinear receding horizon control using the continuation/GMRES method (C/GMRES) is proposed. The continuation method is combined with a Krylov subspace method, GMRES, to update control input by solving a linear equation. In addition, we utilize singular value decomposition, which reduces the size of the linear equation, for the off-line optimization result to speed up on-line calculations, and a barrier function to deal with constraints on the control input. Simulation results show that the proposed algorithm is faster than the conventional C/GMRES.

ブックマーク

SNSによる共有

論文タイトル

オフラインでの特異値分解に基づく拘束条件付き非線形Receding Horizon制御の実時間アルゴリズム

この機能はログイン後に利用できます。
下のボタンをクリックしてください。

詳細検索

論文タイトル

著者

抄録

ジャーナル名

出版日を西暦で入力してください(4桁の数字)。

検索したいキーワードを入力して下さい