運動エネルギーの観点から見た2周期歩容の性能と最適性
浅野 文彦
pp. 197-206
DOI:
10.5687/iscie.23.197抄録
This paper investigates the efficiency of a 2-period limit-cycle gait from the kinetic energy viewpoint. First, we formulate a steady 2-period gait by using simple recurrence formulas for the kinetic energy of an asymmetric rimless wheel. Second, we theoretically show that, in the case that the mean value of the hip angle is constant, the generated 2-period steady gait is less efficient than a 1-period symmetric one in terms of kinetic energy. Furthermore, we show that the symmetric gait is not always optimal from another viewpoint. Finally, we investigate the validity of the derived theory through numerical simulations of virtual passive dynamic walking using a compass-like biped robot.