論文検索サイト

システム/制御/情報 Vol. 36 (2023), No. 4

ISIJ International
belloff
オンライン版ISSN: 2185-811X
冊子版ISSN: 1342-5668
発行機関: THE INSTITUTE OF SYSTEMS, CONTROL AND INFORMATION ENGINEERS (ISCIE)

Backnumber

  1. Vol. 37 (2024)

  2. Vol. 36 (2023)

  3. Vol. 35 (2022)

  4. Vol. 34 (2021)

  5. Vol. 33 (2020)

  6. Vol. 32 (2019)

  7. Vol. 31 (2018)

  8. Vol. 30 (2017)

  9. Vol. 29 (2016)

  10. Vol. 28 (2015)

  11. Vol. 27 (2014)

  12. Vol. 26 (2013)

  13. Vol. 25 (2012)

  14. Vol. 24 (2011)

  15. Vol. 23 (2010)

  16. Vol. 22 (2009)

  17. Vol. 21 (2008)

  18. Vol. 20 (2007)

  19. Vol. 19 (2006)

  20. Vol. 18 (2005)

  21. Vol. 17 (2004)

  22. Vol. 16 (2003)

  23. Vol. 15 (2002)

  24. Vol. 14 (2001)

  25. Vol. 13 (2000)

  26. Vol. 12 (1999)

  27. Vol. 11 (1998)

  28. Vol. 10 (1997)

  29. Vol. 9 (1996)

  30. Vol. 8 (1995)

  31. Vol. 7 (1994)

  32. Vol. 6 (1993)

  33. Vol. 5 (1992)

  34. Vol. 4 (1991)

  35. Vol. 3 (1990)

  36. Vol. 2 (1989)

  37. Vol. 1 (1988)

システム/制御/情報 Vol. 36 (2023), No. 4

時相深層展開を用いたモデル予測制御の多重振り子系に対する有効性の検証

相澤 純平, 小蔵 正輝, 岸田 昌子, 若宮 直紀

pp. 91-98

抄録

In model predictive control (MPC), the control input at each time point is determined by solving an optimization problem. Being optimization-based, MPC is known for its limited applicability to systems with complex dynamics. This technical gap could be solved by the recently proposed MPC method based on temporal deep unfolding. Deep unfolding is method derived from deep learning, and it is used to solve an optimization problem. Temporal Deep Unfolding-Based MPC’s effectiveness is not yet thoroughly evaluated in the literature. Therefore, in this paper, we evaluate the effectiveness of the method for multilink pendulum systems by simulation.

ブックマーク

SNSによる共有

論文タイトル

時相深層展開を用いたモデル予測制御の多重振り子系に対する有効性の検証

線形方程式に対する確率近似法の収束条件

福元 一真, 藤崎 泰正

pp. 99-105

抄録

Stochastic approximation is an iterative algorithm for solving an unknown equation using noisy observation data. In this paper, we revisit a convergence condition of stochastic approximation for a linear equation, where the noise is assumed to be a sequence whose time average converges to zero. In this case, it is usually assumed that the noisy coefficient matrix of the equation is symmetric, while it is not assumed in this paper. Instead, we slightly strengthen the noise convergence and show that the stochastic approximation gives the exact solution of the equation under this novel condition. The proposed condition is useful for establishing a multi-parameter stochastic approximation.

ブックマーク

SNSによる共有

論文タイトル

線形方程式に対する確率近似法の収束条件

深層展開に基づく行列完成手法の高速化

佐々木 亮平, 内藤 凜, 小西 克巳

pp. 106-112

抄録

This paper proposes an acceleration technique using deep unfolding for a matrix completion problem (MCP), which is a problem of estimating missing entries of a matrix. Various algorithms have been proposed for this problem, and their recovery performances depend on parameters used in the algorithms. This paper focuses on the alternating gradient descent (AGD) algorithm for the MCP and shows that its performance depends on step size parameters. Then the deep unfolding is applied to the algorithm and provides a trainable AGD (TAGD) algorithm. Numerical examples show that TAGD algorithm achieves better performance than AGD algorithm.

ブックマーク

SNSによる共有

論文タイトル

深層展開に基づく行列完成手法の高速化

データに基づく応答予測と制御器調整

酒井 裕太, 川口 夏樹, 佐藤 孝雄

pp. 113-119

抄録

In the present study, the response of a reference manipulated-variable is estimated directly from data, and the controller parameters of a fixed structure controller are optimized so that a closed-loop system is close to a reference model. Since a regularization method is used in the response estimation method, the estimation accuracy is prevented from deteriorating due to noise effects. In the proposed data-driven design, a pre-filter is designed to compensate for the difference between a model-based model reference problem and the proposed data-driven objective function.

ブックマーク

SNSによる共有

論文タイトル

データに基づく応答予測と制御器調整

この機能はログイン後に利用できます。
下のボタンをクリックしてください。

詳細検索

論文タイトル

著者

抄録

ジャーナル名

出版日を西暦で入力してください(4桁の数字)。

検索したいキーワードを入力して下さい