論文検索サイト

システム/制御/情報 Vol. 30 (2017), No. 7

ISIJ International
belloff
オンライン版ISSN: 2185-811X
冊子版ISSN: 1342-5668
発行機関: THE INSTITUTE OF SYSTEMS, CONTROL AND INFORMATION ENGINEERS (ISCIE)

Backnumber

  1. Vol. 37 (2024)

  2. Vol. 36 (2023)

  3. Vol. 35 (2022)

  4. Vol. 34 (2021)

  5. Vol. 33 (2020)

  6. Vol. 32 (2019)

  7. Vol. 31 (2018)

  8. Vol. 30 (2017)

  9. Vol. 29 (2016)

  10. Vol. 28 (2015)

  11. Vol. 27 (2014)

  12. Vol. 26 (2013)

  13. Vol. 25 (2012)

  14. Vol. 24 (2011)

  15. Vol. 23 (2010)

  16. Vol. 22 (2009)

  17. Vol. 21 (2008)

  18. Vol. 20 (2007)

  19. Vol. 19 (2006)

  20. Vol. 18 (2005)

  21. Vol. 17 (2004)

  22. Vol. 16 (2003)

  23. Vol. 15 (2002)

  24. Vol. 14 (2001)

  25. Vol. 13 (2000)

  26. Vol. 12 (1999)

  27. Vol. 11 (1998)

  28. Vol. 10 (1997)

  29. Vol. 9 (1996)

  30. Vol. 8 (1995)

  31. Vol. 7 (1994)

  32. Vol. 6 (1993)

  33. Vol. 5 (1992)

  34. Vol. 4 (1991)

  35. Vol. 3 (1990)

  36. Vol. 2 (1989)

  37. Vol. 1 (1988)

システム/制御/情報 Vol. 30 (2017), No. 7

超高感度振動センサを用いた浴槽内における生体情報計測システム

大保 武慶, 澤山 智之, 澤山 卓也, 久保田 直行

pp. 263-272

抄録

The number of drowning incident at home has been increasing steadily over time. The most common cause of the incidents is a situation that produces hemodynamic compromise during bathing. It can heighten the risk of causing a stroke, myocardial infarction, and loss of consciousness. This paper presents an inovative ultrasensitive vibration sensor for detecting viral sign that can measure micro vibration transmitted through a bathtub. Moreover, we propose a neuro-fuzzy system to extract hearbeat and estimate human states during bathing. In the experimental result, we discuss the effectiveness of the proposed system in terms of measuring precision, comparing with a pulse rate meter.

他の人はこちらも検索

ブックマーク

SNSによる共有

論文タイトル

超高感度振動センサを用いた浴槽内における生体情報計測システム

Revisit of Rule-Deletion Strategy for XCSAM Classifier System on Classification

Nakata Masaya, Hamagami Tomoki

pp. 273-285

抄録

The XCSAM classifier system is an approach of evolutionary rule-based machine learning, which evolves rules advocating the highest-return actions at state, resulting in best classification. This paper starts with claiming a limitation that XCSAM still fails to evolutionary generate adequate rules advocating the highest-return actions. Then, under our hypothesis that this limitation is caused from the rule-deletion mechanism of XCSAM, we revisit its rule-deletion strategy in order to promote the evolution of adequate rules. Different from the existing deletion strategy which deletes two rules for each rule-evolution, our deletion strategy is modified to delete more than two rules as necessary. Experimental results on a benchmark classification task validate our modification powerfully works to evolve adequate rules, improving the performance of XCSAM. We further show our modification robustly enables XCSAM to perform well on real world classification task.

他の人はこちらも検索

ブックマーク

SNSによる共有

論文タイトル

Mixed Meal Model in Type 1 Diabetes

Yamamoto Noguchi Claudia Cecilia, Furutani Eiko

pp. 286-292

抄録

In keeping with the recent recognition of the additive impact of dietary fat on postprandial blood glucose (BG) levels in type 1 diabetes mellitus (T1DM), we include a number of physiologically-relevant improvements to a previous conceptual minimal mixed meal model by considering independent signals for gut transit of carbohydrates and dietary fat, and explicit representation of fatty acid spillover in the compartmental representation of non-esterified fatty acids (NEFA) to represent lipid-derived insulin resistance as the complementary increase in triglycerides (TG) and NEFA levels. Simulation results of postprandial plasma lipids and BG excursion compared with clinical data in the literature demonstrate the validity and potential of the minimal mixed meal model proposed.

ブックマーク

SNSによる共有

論文タイトル

有意味・無意味騒音が精神作業課題に対する選択的注意に及ぼす影響

為末 隆弘, 佐伯 徹郎

pp. 293-295

ブックマーク

SNSによる共有

論文タイトル

有意味・無意味騒音が精神作業課題に対する選択的注意に及ぼす影響

この機能はログイン後に利用できます。
下のボタンをクリックしてください。

詳細検索

論文タイトル

著者

抄録

ジャーナル名

出版日を西暦で入力してください(4桁の数字)。

検索したいキーワードを入力して下さい