論文検索サイト

システム/制御/情報 Vol. 19 (2006), No. 7

ISIJ International
belloff
オンライン版ISSN: 2185-811X
冊子版ISSN: 1342-5668
発行機関: THE INSTITUTE OF SYSTEMS, CONTROL AND INFORMATION ENGINEERS (ISCIE)

Backnumber

  1. Vol. 37 (2024)

  2. Vol. 36 (2023)

  3. Vol. 35 (2022)

  4. Vol. 34 (2021)

  5. Vol. 33 (2020)

  6. Vol. 32 (2019)

  7. Vol. 31 (2018)

  8. Vol. 30 (2017)

  9. Vol. 29 (2016)

  10. Vol. 28 (2015)

  11. Vol. 27 (2014)

  12. Vol. 26 (2013)

  13. Vol. 25 (2012)

  14. Vol. 24 (2011)

  15. Vol. 23 (2010)

  16. Vol. 22 (2009)

  17. Vol. 21 (2008)

  18. Vol. 20 (2007)

  19. Vol. 19 (2006)

  20. Vol. 18 (2005)

  21. Vol. 17 (2004)

  22. Vol. 16 (2003)

  23. Vol. 15 (2002)

  24. Vol. 14 (2001)

  25. Vol. 13 (2000)

  26. Vol. 12 (1999)

  27. Vol. 11 (1998)

  28. Vol. 10 (1997)

  29. Vol. 9 (1996)

  30. Vol. 8 (1995)

  31. Vol. 7 (1994)

  32. Vol. 6 (1993)

  33. Vol. 5 (1992)

  34. Vol. 4 (1991)

  35. Vol. 3 (1990)

  36. Vol. 2 (1989)

  37. Vol. 1 (1988)

システム/制御/情報 Vol. 19 (2006), No. 7

ファジィネスを含む不確実性を考慮した演繹推論法

東 るみ子, 宮城 隼夫

pp. 265-273

抄録

In the field of Artificial Intelligence, there are many studies of reasoning method with uncertainty. Recently, research about the reasoning method from observed fact with uncertainty has been developed, and also the reasoning method which distinguishes the kind of uncertainty is proposed by Matsushima et al. Their research shows clarifying the mathematical model of reasoning method with uncertainty in the statistical standpoint. In this paper, we propose a reasoning system model and a method including uncertainty, based on fuzzy theory. Usually, uncertainty includes not only randomness in field of statistics but also vagueness based on the human's subjective judge with fuzziness. We consider the system in which value of observed fact is calculated using concept of fuzzy events. Moreover, we propose an algorithm of deductive reasoning using Newton-Raphson method, for the reasoning problems with randomness or fuzziness in the system.

ブックマーク

SNSによる共有

論文タイトル

ファジィネスを含む不確実性を考慮した演繹推論法

ガウス関数によるニューラルネットワークを用いた紙幣認識システムと学習途上におけるパラメータの最適化手法

孫 柏青, 竹田 史章

pp. 274-283

抄録

In this paper, in order to improve rejection capabilities of the paper currency recognition system for unknown currency patterns on promise of ensuring recognition capabilities for known currency patterns, a feed-forward neural network (FNN) with Gaussian activation function is proposed. The proposed activation function is a ridge-like function. Moreover, a hybrid-learning algorithm for optimizing the width parameters of the Gaussian function is proposed. In the network the Gaussian activation function instead of the sigmoid function is employed in all units of hidden and output layers. The algorithm consists of two steps, one is exploring local minima by employing the gradient descent search, and the other is extricating the search from local minima, in which a random search with the downhill simplex method is employed. The results of simulation reveal the potential effectiveness of the proposed activation function and the algorithm. The system with the proposed activation function and the proposed algorithm can recognize known currency patterns and reject the unknown currency patterns effectively.

ブックマーク

SNSによる共有

論文タイトル

ガウス関数によるニューラルネットワークを用いた紙幣認識システムと学習途上におけるパラメータの最適化手法

拘束のあるサンプル値サーボ系に対するコマンド整形

藤岡 久也

pp. 284-289

抄録

A command shaping procedure for sampled-data servo systems is proposed. The command input and the initial state of discrete-time components of the system are determined by solving LMIs to optimize the quadratic tracking performance under the constraints of the values of signals such as input and state saturation. The intersample behavior of the systems is taken into account for both the performance and the constraints.

ブックマーク

SNSによる共有

論文タイトル

拘束のあるサンプル値サーボ系に対するコマンド整形

不安定零点をもつ可逆系に対する安定な逆システムの状態空間上での設計

王 蕊, 渡部 慶二, 村松 鋭一, 有我 祐一, 遠藤 茂

pp. 290-292

ブックマーク

SNSによる共有

論文タイトル

不安定零点をもつ可逆系に対する安定な逆システムの状態空間上での設計

この機能はログイン後に利用できます。
下のボタンをクリックしてください。

詳細検索

論文タイトル

著者

抄録

ジャーナル名

出版日を西暦で入力してください(4桁の数字)。

検索したいキーワードを入力して下さい