Transactions of the Institute of Systems, Control and Information Engineers
New Arrival Alert : OFF

You can use this feature after you logged into the site.
Please click the button below.

Log in / Sign up
ONLINE ISSN: 2185-811X
PRINT ISSN: 1342-5668

Transactions of the Institute of Systems, Control and Information Engineers Vol. 19 (2006), No. 6

  • Approximation of Nonstationary Optimal Feedback Law using Quantum Mechanical Eigenvalue Analysis

    pp. 211-219

    Bookmark

    You can use this feature after you logged into the site.
    Please click the button below.

    Log in / Sign Up

    DOI:10.5687/iscie.19.211

    Nonlinear optimal feedback law subject to a terminal cost is approximated using quantum mechanical eigenvalue analysis. The optimal feedback law is governed by nonstationary Hamilton-Jacobi equation with a final condition. Numerical time integration in the backward direction must be done along a characteristic curve of the system. Compatibility under such constraints has restricted practical calculations to the system with dimensionality of only 1 or 2. For approximating optimal feedback with a terminal cost, we propose a quantum mechanical algorithm applicable to systems of arbitrary dimensions. The nonlinear optimal control system is represented by a complex-valued linear wave equation, where a time derivative of the system is connected with linear Hamiltonian operator H. We then apply eigenvalue analysis to this operator H. The value function applied to calculation of optimal feedback is approximated using terms, each of which are a product of eigenfunction φK (x) and time exponential function characterized by corresponding eigenvalue EK. The proposed method thus needs no time integration in the backward time direction. Simulation studies are performed for systems with a state variable of either 1 or 2 dimensions. The new algorithm has an advantage over conventional calculations in that we can fully make use of storage and development of eigenvalue analysis tools.
  • Exploring the Analogy in the Emergent Properties of Locomotion Gaits of Snakebot Adapted to Challenging Terrain and Partial Damage

    pp. 220-232

    Bookmark

    You can use this feature after you logged into the site.
    Please click the button below.

    Log in / Sign Up

    DOI:10.5687/iscie.19.220

    The objective of this work is to investigate the emergent properties of the gaits of the simulated snake-like robot, Snakebot. The gaits are automatically designed through Genetic Programming (GP) to be robust, general, adaptive, and the fastest possible sidewinding, locomotion. Considering the notion of emergent intelligence as the ability of Snakebot to achieve its goals (of moving fast) without the need to be explicitly taught how to do so, we present empirical results demonstrating the emergence of sidewinding locomotion from relatively simple motion patterns of morphological segments of Snakebot. We discuss the emergent properties of the evolved robust high velocity sidewinding locomotion gaits of Snakebot when situated in challenging environments. Then we elaborate on the ability of Snakebot to adapt to partial damage by gradually improving its velocity characteristics, and the emergent properties of obtained adaptive gaits. Verifying the practical implications of the analogy between the emergent properties of the robust and the adaptive sidewinding gaits, this work could be viewed as a step towards building real Snakebots, which are able to perform robustly in challenging environments.
  • 3-D Image Measurement by Combination of Monochrome-Projection Color-Analysis and OIMP Technique

    pp. 233-240

    Bookmark

    You can use this feature after you logged into the site.
    Please click the button below.

    Log in / Sign Up

    DOI:10.5687/iscie.19.233

    The Monochrome-Projection Color-Analysis (MPCA) technique is proposed in order to measure the three-dimensional shape of an object having a complicated surface color, to shorten the measurement time and to improve measurement accuracy. An optimal color channel is chosen, and a single channel image for intensity calculation is compounded so that the greatest amount of information from an observation image is used and the effect of object color on the measurement is mitigated. By combining MPCA and the Optimal Intensity-Modulation Projection (OIMP) technique, approximately 100 stripes are reliably detectable in a single pattern projection and double image capture.
  • Graph Topology and Synchronization of Network Coupled Dynamic Systems with Time-delay

    pp. 241-249

    Bookmark

    You can use this feature after you logged into the site.
    Please click the button below.

    Log in / Sign Up

    DOI:10.5687/iscie.19.241

    This paper studies the synchronization of network coupled systems consisting of many identical dynamic subsystems as well as network coupling with interaction time-delay. Based on graph theory and Lyapunov stability theory, the paper gives conditions for the total system synchronization and the boundedness of trajectories with respect to the graph structures of network coupling interaction. According to our study, it is revealed that, different from the systems without time-delay, (1) there will be a case where synchronization will occurs if the interaction strength and the number of the graph edges lie between some upper and lower bounds, (2) in regular graphs, such that complete-, star- and cycle graph, the synchronization conditon will be violated if total number of subsystems increases, (3) for the complex networks such as Small World Network and Scale Free Network, the synchronization conditon is more easier to be satisfied than regular graphs when the total number of subsystems increases.These are verified using numerical simulations.
  • Collision Detection and Control of a Single-link Flexible Arm

    pp. 250-261

    Bookmark

    You can use this feature after you logged into the site.
    Please click the button below.

    Log in / Sign Up

    DOI:10.5687/iscie.19.250

    Damage avoidance of the flexible manipulators in collision with unlooked-for obstacle is a significant problem in industry and space programs. This paper presents a method of control for reducing damage and/or undesirable vibration of the single-link flexible arm due to collision. The detection of the collision is carried out using the detection function which was proposed recently by the author. The controller is designed to have twofold manner : i) to control the position and vibration of the flexible arm; and ii) to suspend the position control and to minimize the deformation and vibration of the arm whenever any collision has been detected. Numerical simulations and experiments are provided.
  • Helical Crossover Strategy in Genetic Programming

    pp. 262-264

    Bookmark

    You can use this feature after you logged into the site.
    Please click the button below.

    Log in / Sign Up

    DOI:10.5687/iscie.19.262

Article Access Ranking

18 Jan. (Last 30 Days)

  1. A Review of the Chemistry, Structure and Formation Conditions of Silico-Ferrite of Calcium and Aluminum (‘SFCA’) Phases ISIJ International Vol.58(2018), No.12
  2. Improving Blast Furnace Raceway Blockage Detection. Part 1: Classification of Blockage Events and Processing Framework ISIJ International Advance Publication
  3. Phase Transformation Behavior of Oxide Scale on Plain Carbon Steel Containing 0.4 wt.% Cr during Continuous Cooling ISIJ International Vol.58(2018), No.12
  4. Hydrogen Embrittlement Susceptibility Evaluation of Tempered Martensitic Steels Showing Different Fracture Surface Morphologies Tetsu-to-Hagané Vol.105(2019), No.1
  5. Gasification and Migration of Phosphorus from High-phosphorus Iron Ore during Carbothermal Reduction ISIJ International Vol.58(2018), No.12
  6. Effect of Coke Size on Reducing Agent Ratio (RAR) in Blast Furnace ISIJ International Vol.58(2018), No.12
  7. Improvement of Sinter Productivity by Control of Magnetite Ore Segregation in Sintering Bed ISIJ International Vol.58(2018), No.12
  8. Heat Transfer Characteristic of Slit Nozzle Impingement on High-temperature Plate Surface ISIJ International Advance Publication
  9. High Temperature Thermal Diffusivity Measurement for FeO Scale by Electrical-Optical Hybrid Pulse-Heating Method ISIJ International Vol.58(2018), No.12
  10. Effect of TiO2 and MnO on Viscosity of Blast Furnace Slag and Thermodynamic Analysis ISIJ International Vol.58(2018), No.12

Search Phrase Ranking

18 Jan. (Last 30 Days)

  1. blast furnace
  2. blast furnace productivity
  3. blast furnace permeability
  4. 鉄と鋼
  5. laser welder
  6. titanium
  7. activity feo
  8. argon steel
  9. continous annealing
  10. eaf operation