Transactions of the Institute of Systems, Control and Information Engineers
New Arrival Alert : OFF

You can use this feature after you logged into the site.
Please click the button below.

Log in / Sign up
ONLINE ISSN: 2185-811X
PRINT ISSN: 1342-5668

Transactions of the Institute of Systems, Control and Information Engineers Vol. 21 (2008), No. 5

  • A Heuristic Algorithm Using Variable Depth Neighborhood for the Input-Output Scheduling Problem in Automated Warehouses

    pp. 135-144

    Bookmark

    You can use this feature after you logged into the site.
    Please click the button below.

    Log in / Sign Up

    DOI:10.5687/iscie.21.135

    In this paper, we propose a new heuristic algorithm for the Input-Output Scheduling Problem (IOSP) at large scale automated warehouses. The proposed method separates IOSP into two subproblems, the one is to arrange all given tasks into a good partition, and the other is to generate a good tour for each group. It searches the best grouping of tasks by variable depth neighborhood local search, generating the optimum tour for each test group by enumeration. The small group size in IOSP makes it possible to enumerate tours. The results of numerical experiments on the same instances that some existing method solved show that the proposed method well competes with existing one under the criterion that considers both schedule length and solution time.
  • Stochastic Ellipsoid Methods with Multiple Cuts

    pp. 145-150

    Bookmark

    You can use this feature after you logged into the site.
    Please click the button below.

    Log in / Sign Up

    DOI:10.5687/iscie.21.145

    A stochastic ellipsoid method with multiple cuts is proposed for a class of robust feasibility problems which is to find a solution satisfying a set of parameter-dependent convex constraints for all possible parameter values. In particular, a new update rule is presented for constructing a smaller ellipsoid which contains the intersection of a previous ellipsoid and strips determined by given multiple gradients. A quantitative analysis of the volume of the updated ellipsoid is also provided, which leads to a further modification of the algorithm achieving fast convergence.
  • A Solution Method for Pole Placement and Stability Radius Enlargement Problem

    pp. 151-158

    Bookmark

    You can use this feature after you logged into the site.
    Please click the button below.

    Log in / Sign Up

    DOI:10.5687/iscie.21.151

    This paper presents a robust controller design method for linear time-invariant SISO systems based on an optimization approach. The task is to enlarge real stability radius to counter plant parameter perturbations by using extra degree of freedom of the controller parameters in the pole placement scheme. The formula for the real stability radius is known as an infimum of a certain function and that makes its gradients discontinuous. It is shown that by some manipulations, the considered problem can be converted to a nonlinear optimization problem, to which a gradient-based optimization method becomes applicable. The case of complex stability radius is also considered, which is less sharp as a robust stability index than the real counterpart, but has a much simpler form. Numerical examples for both cases are presented to show that they actually work, and some comparisons are discussed, leading to a suggestion on the effective uses of these two stability radius computation methods.
  • A Blocking Zero Placement Method by Dynamic State Feedback

    pp. 159-164

    Bookmark

    You can use this feature after you logged into the site.
    Please click the button below.

    Log in / Sign Up

    DOI:10.5687/iscie.21.159

    In this paper, we consider a blocking zero placement problem for closed-loop systems by state feedback. As a solution to the problem, we derive a dynamic state feedback controller which can be designed by solving a stabilization problem by constant state feedback. Moreover, we apply the proposed blocking zero placement method to a periodic disturbance rejection problem. Since a transfer function with blocking zeros can eliminate input signals corresponding to these blocking zeros, the periodic disturbance can be rejected if closed-loop systems have corresponding blocking zeros with the period on the imaginary axis.

Article Access Ranking

23 Jan. (Last 30 Days)

  1. Perspective toward Long-term Global Goal for Carbon Dioxide Mitigation in Steel Industry Tetsu-to-Hagané Vol.105(2019), No.6
  2. In-Situ Observation Experimental Study on the Agglomeration and Dispersion of Particles at the Interface of High-temperature Melts ISIJ International Advance Publication
  3. Effects of Residual Stress on Hydrogen Embrittlement of a Stretch-Formed Tempered Martensitic Steel Sheet ISIJ International Advance Publication
  4. Review on the High-Temperature Thermophysical Properties of Continuous Casting Mold Fluxes for Highly Alloyed Steels Tetsu-to-Hagané Vol.107(2021), No.1
  5. Quantitative Evaluation of Solute Hydrogen Effect on Dislocation Density in a Low-carbon Stable Austenitic Stainless Steel ISIJ International Advance Publication
  6. Development and Prospects of Refining Techniques in Steelmaking Process ISIJ International Vol.60(2020), No.12
  7. Preface to the Diamond Jubilee Issue on “Selected Topics in Iron and Steel and Their Processing toward the New Steel Age” ISIJ International Vol.60(2020), No.12
  8. In situ Observation of Reduction Behavior of Multicomponent Calcium Ferrites by XRD and XAFS Tetsu-to-Hagané Advance Publication
  9. Improved Hydrogen Embrittlement Resistance of Steel by Shot Peening and Subsequent Low-temperature Annealing ISIJ International Advance Publication
  10. Intraparticle Temperature of Iron-Oxide Pellet during the Reduction Tetsu-to-Hagané Vol.60(1974), No.9

Search Phrase Ranking

23 Jan. (Last 30 Days)

  1. blast furnace
  2. 西山記念技術講座
  3. blast furnace permeability
  4. j. f. elliott
  5. blast furnace burden distribution
  6. blast furnace productivity
  7. bottom dross
  8. carbon-containing pellet
  9. cog blast furnace injection
  10. cr2o3 al2o3