Transactions of the Institute of Systems, Control and Information Engineers
New Arrival Alert : OFF

You can use this feature after you logged into the site.
Please click the button below.

Log in / Sign up
ONLINE ISSN: 2185-811X
PRINT ISSN: 1342-5668

Transactions of the Institute of Systems, Control and Information Engineers Vol. 33 (2020), No. 2

  • Environment-Adaptive Genetic Algorithm-based Nesting Scheduling for Sheet-Metal Processing

    pp. 39-48

    Bookmark

    You can use this feature after you logged into the site.
    Please click the button below.

    Log in / Sign Up

    DOI:10.5687/iscie.33.39

    Sheet metal processing is a popular machining technique. In sheet metal processing, as many parts as possible are cut from a metal sheet to effectively use the metal without waste. The parts cut from the sheet metal are processed by a specified due-date. To meet the due-date, scheduling is important. The optimizations of the cutting layout and schedule are called nesting and scheduling, respectively. The relation between them sometimes exhibits a trade-off. To enhance the efficiency of the entire manufacturing process, nesting and scheduling should be considered simultaneously. Therefore, in this study, we proposed an environment-adaptive genetic-algorithm-based nesting scheduling method for the simultaneous consideration of two related problems with different optimization targets. We treated the problems as different environments, and the cutting layout and processing order of the parts evolved in each environment using the genetic algorithm.
  • Minimum Implementation of Linear Traffic Lights for One-way Intersections

    pp. 49-56

    Bookmark

    You can use this feature after you logged into the site.
    Please click the button below.

    Log in / Sign Up

    DOI:10.5687/iscie.33.49

    Recent years, a new type of traffic lights, called the linear traffic lights, has been proposed. The linear traffic lights, which are placed at an intersection, monitor the traffic status of the crossing roads and control the traffic flow around the intersection. This paper considers the minimum configuration of the linear traffic lights to guarantee non-stopping crossing without collision at the intersection of one-way roads.
  • Analysis of Distributed Thompson Sampling based on Consensus Control

    pp. 57-65

    Bookmark

    You can use this feature after you logged into the site.
    Please click the button below.

    Log in / Sign Up

    DOI:10.5687/iscie.33.57

    Recently, distributed control for multi-agent systems has attracted much attention. Each agent makes a decision through interaction over a communication network. In general, there exists a trade-off between exploration of the best choice and exploitation of the obtained knowledge. Such a trade-off can be formulated as the bandit problem. In this paper, we investigate a distributed bandit problem where a group of agents cooperatively searches the best choice in a distributed manner. We propose a cooperative Thompson sampling based on the consensus algorithm of multi-agent systems. The theoretical analysis of a regret bound is carried out for the case when the communication network is represented by a complete graph. The numerical examples show that the regret can be reduced by the proposed cooperative Thompson sampling compared to the case when agents individually search the best choice without cooperation.

Article Access Ranking

16 May. (Last 30 Days)

  1. Influence of Thermomechanical Treatment on Delayed Fracture Property of Mo-Bearing Medium-Carbon Steel ISIJ International Vol.62(2022), No.2
  2. Interaction Coefficients of Mo, B, Ni, Ti and Nb with Sn in Molten Fe–18mass%Cr Alloy ISIJ International Vol.62(2022), No.3
  3. Fundamentals of Silico-Ferrite of Calcium and Aluminium (SFCA) and SFCA-I Iron Ore Sinter Bonding Phase Formation: Effects of MgO Source on Phase Formation during Heating ISIJ International Vol.62(2022), No.4
  4. Dissolution Kinetics of Synthetic FeCr2O4 in CaO–MgO–Al2O3–SiO2 Slag ISIJ International Vol.62(2022), No.4
  5. Surface Quality Evaluation of Heavy and Medium Plate Using an Analytic Hierarchy Process Based on Defects Online Detection ISIJ International Advance Publication
  6. Influence of Stabilizing Elements on Ductile-Brittle Transition Temperature (DBTT) of 18Cr Ferritic Stainless Steels ISIJ International Vol.62(2022), No.4
  7. Exploration of the Relationship between the Electromagnetic Field and the Hydrodynamic Phenomenon in a Channel Type Induction Heating Tundish Using a Validated Model ISIJ International Vol.62(2022), No.4
  8. Assessment of Blast Furnace Operational Constraints in the Presence of Hydrogen Injection ISIJ International Advance Publication
  9. Phenomenological Understanding about Melting Temperature of Multi-Component Oxides Tetsu-to-Hagané Vol.108(2022), No.4
  10. Numerical Simulation of Charging Biochar Composite Briquette to Blast Furnace ISIJ International Vol.62(2022), No.4

Search Phrase Ranking

16 May. (Last 30 Days)

  1. blast furnace
  2. blast furnace permeability
  3. blast furnace productivity
  4. jet impingement
  5. jet impingement + cooling + runout table
  6. refractory
  7. steel
  8. viscosity of slag fluorine
  9. 1. m. nainar, a. veawab: ind. eng. chem. res., 48(2009), 9299. https://doi.org/10.1021/ie801802a 2. c. h. yu, c. h. huang, c. s. tan: aerosol air qual. res., 12(2012), 745. https://doi.org/10.4209/aaqr.2012.05.0132 3. g. léonard, c. crosset, d. toye, g. heyen: comput. chem. eng., 83(2015), 121. https://doi.org/10.1016/j.compchemeng.2015.05.003 4. e. e. ünveren, b. ö. monkul, ş. sarıoğlan, n. karademir, e. alper: petroleum, 3(2017), 37. https://doi.org/10.1016/j.petlm.2016.11.001 5. m. b. yue, b. sun, y. cao, y. wang, j. wang: chem. eur. j., 14(2008), 3442. https://doi.org/10.1002/chem.200701467 6. w. choi, j. park, c. kim, m. choi: chem. eng. j., 408(2021), 127289. https://doi.org/10.1016/j.cej.2020.127289 7. c. chen, s. t. yang, w. s. ahn, r. ryoo: chem. commun., 24(2009), 3627. https://doi.org/10.1039/b905589d 8. p. zhao, g. zhang, y. xu, y. k. lv, z. yang, h. cheng: energy and fuels, 33(2019), 3357. https://doi.org/10.1021/acs.energyfuels.8b04278 9. k. dong, w. liu, r. zhu: high temp. mater. process, 34(2015), 539. https://doi.org/10.1515/htmp-2014-0076 10. s. wang, s. xu, s. gao, p. xiao, m. jiang, h. zhao, b. huang, l. liu, h. niu, j. wang, d. guo: sci. rep., 11(2021), 1. https://doi.org/10.1038/s41598-021-90532-9 11. q. t. vu, h. yamada, k. yogo: ind. eng. chem. res., 60(2021), 4942. https://doi.org/10.1021/acs.iecr.0c05694 12. m. wang, l. yao, j. wang, z. zhang, w. qiao, d. long, l. ling: appl. energy, 168(2016), 282. https://doi.org/10.1016/j.apenergy.2016.01.085 13. a. heydari-gorji, a. sayari: ind. eng. chem. res., 51(2012), 6887. https://doi.org/10.1021/ie3003446 14. s. a. didas, r. zhu, n. a. brunelli, d. s. sholl, c. w. jones: j. phys. chem. c., 118(2014), 12302. https://doi.org/10.1021/jp5025137 15. q. t. vu, h. yamada, k. yogo: ind. eng. chem. res., 57(2018), 2638. https://doi.org/10.1021/acs.iecr.7b04722 16. q. t. vu, h. yamada, k. yogo: energy & fuels, 33(2019), 3370. https://doi.org/10.1021/acs.energyfuels.8b04307 17. x. zhang, x. zheng, s. zhang, b. zhao, w. wu: ind. eng. chem. res., 51(2012), 15163. https://doi.org/10.1021/ie300180u 18. h. yamada, f. a. chowdhury, j. fujiki, k. yogo: acs sustain. chem. eng., 7(2019), 9574. https://doi.org/10.1021/acssuschemeng.9b01064 19. x. wang, q. guo, t. kong: chem. eng. j., 273(2015), 472. https://doi.org/10.1016/j.cej.2015.03.098 20. f. s. taheri, a. ghaemi, a. maleki: energy and fuels, 33(2019),11465. https://doi.org/10.1021/acs.energyfuels.9b02636 21. a. sayari, y. belmabkhout: j. am. chem. soc., 132(2010), 6312. https://doi.org/10.1021/ja1013773
  10. 10.1016/j.apenergy.2016.01.085