Molecular Dynamics of Solidification
Yasushi Shibuta
pp. 1107-1124
Abstract
Over many years, mesoscale analysis such as the phase-field method has been the mainstream for numerical simulation of solidification. In contrast, our group has taken the initiative in applying molecular dynamics (MD) simulation to various problems in solidification. In this review, recent advances and contributions of MD simulations for solidification are presented. The primary contribution of MD simulation is the derivation of solid-liquid interfacial properties since it is not easy to measure these properties experimentally with high precision. In addition, recent significant progress in computational environments has dramatically expanded the possibilities of MD simulations for solidification. Now, MD simulations with a scale of billion atoms at the micrometer-scale have become a reality, enabling the exploration of analyses previously dominated by mesoscale methods, such as grain growth and dendrite growth. In particular, the dendrite growth at the micrometer-scale presented here represents the first achievement of directly simulating a typical four-fold symmetrical dendrite structure solely through atomic-scale simulations, to the best of the author’s knowledge. Moreover, new attempts at the fusion of data-driven methods and MD simulations are presented in this review, aiming to contribute to the rapid development of the field of solidification in the future.
Readers Who Read This Article Also Read
ISIJ International Vol.64(2024), No.7
ISIJ International Vol.64(2024), No.6
ISIJ International Vol.64(2024), No.6