CO Reduction Process Technology and Development of Iron Ore Sintering Process
Tingliang Zhong, Xiaohai Li, Xuefeng She, Yanjiang Wang, Peng Liu, Haibin Zuo, Qingguo Xue
pp. 1737-1757
Abstract
Iron ore sintering is a high-energy-consuming industry, and its high dependence on fossil fuels and the low concentration of CO in the sintering flue gas conceal the truth of the large total amount of CO emissions, which leads to the continuous emission of CO in the sintering flue gas has been harmful to the atmosphere and human health, and it is facing the great pressure of CO emission reduction. On the basis of commercially applied sintering technologies, the mechanism and characteristics of CO emission from sintering flue gas are discussed, and feasible ways to control CO emission in multiple aspects of source control, process emission reduction and end-of-pipe treatment are summarized. The core of source abatement is to reduce the fuel ratio, process abatement is to improve the combustion conditions of fuels to enhance the conversion rate of CO to CO2, and end-of-pipe treatment is to separate or oxidize CO to CO2 by physical or chemical means. Hydrogen sintering technology is the future development direction for source abatement, steam blowing sintering technology is introduced for process control, and catalytic oxidation technology has great prospects for removing CO from flue gas in end-of-pipe treatment. CO has great prospects, but efforts are needed to develop highly active catalysts with anti-poisoning and long-standing stability. Finally, feasible technical routes for sintering flue gas CO reduction and their challenges are analyzed, and a coordinated multifaceted control of source-process-end sintering technologies is proposed to achieve the goal of high-efficiency sintering flue gas CO reduction.
Readers Who Read This Article Also Read
ISIJ International Vol.64(2024), No.12
ISIJ International Vol.64(2024), No.12
ISIJ International Vol.64(2024), No.12