Numerical Simulation of a Weld Pool Formation in a TIG Welding Using an Incompressible SPH Method
Masumi ITO, Seiichiro IZAWA, Yu FUKUNISHI, Masaya SHIGETA
pp. 213-222
DOI:
10.2207/qjjws.32.213Abstract
An incompressible SPH (Smoothed Particle Hydrodynamics) method was applied to numerical simulation of the thermofluid behavior of an anode metal in a TIG (Tungsten Inert Gas) welding process, taking account of the phase change of the anode material, free surface deformation of the liquid, and four dominant flow-driving forces, namely, gradient of surface tension (Marangoni effect), gas drag on the liquid surface, buoyancy, and electromagnetic force (Lorentz force). The present method successfully simulated that the direction of the temperature gradient of surface tension causes a significant difference of weld penetration. The penetration geometries of the present results agreed with those of actual welding processes. It is shown that the particle method used in this study is applicable to arc welding simulations.
Readers Who Read This Article Also Read
QUARTERLY JOURNAL OF THE JAPAN WELDING SOCIETY Vol.31(2013), No.4
QUARTERLY JOURNAL OF THE JAPAN WELDING SOCIETY Vol.30(2012), No.2
QUARTERLY JOURNAL OF THE JAPAN WELDING SOCIETY Vol.30(2012), No.1