Novel Dissimilar Spot Welding of Aluminum Alloy and Steel Sheets by Friction Stirring
Kaoru OHISHI, Masaru SAKAMURA, Kohei OTA, Hidetoshi FUJII
pp. 1-7
DOI:
10.2207/qjjws.32.1Abstract
Friction Stir Spot Welding (FSSW) has been applied to a dissimilar metal lap joint of an aluminum alloy and steel by stirring only the upper aluminum alloy sheet. Therefore, FSSW cannot be used to weld a lap joint composed of three or more sheets and a lap joint with an adhesive interlayer. In the present work, we propose a novel spot welding process for dissimilar metal lap joints using a new tool with the tip made of spherical ceramics. When this process is applied to the lap joint of the aluminum alloy and steel, the tool can be plunged into the lower steel sheet, then a steel projection is formed in the aluminum alloy sheet. The height of this steel projection increases with the plunge depth, and accordingly, the weld strength increases; the tensile shear strength and the cross tensile strength reached about 3.6 kN/point and 2.3 kN/point, respectively.