QUARTERLY JOURNAL OF THE JAPAN WELDING SOCIETY
New Arrival Alert : OFF

You can use this feature after you logged into the site.
Please click the button below.

Log in / Sign up
PRINT ISSN: 0288-4771

QUARTERLY JOURNAL OF THE JAPAN WELDING SOCIETY Vol. 34 (2016), No. 2

  • An investigation on a CTOD calculation formula with various crack length-to-width ratios (Bx2B, SE(B) specimen)

    pp. 57-66

    Bookmark

    You can use this feature after you logged into the site.
    Please click the button below.

    Log in / Sign Up

    DOI:10.2207/qjjws.34.57

    The authors have already established a new CTOD calculation formula, and have been revised a CTOD testing standard of WES1108 in the Japanese Welding Engineering Society by using this formula. Because the fatigue pre-crack tip should be placed in the specified microstructure such as HAZ for the critical CTOD evaluation of welded joints, the next step is the application of the formula to various crack length-to-width ratio, a0/W, conditions, especially for shallow crack specimens. In the previous work, a rotational deformation was apparently observed, and the plastic rotational factor, rp, was described as a function of wide a0/W range. However, a simple use of rp did not result in a better CTOD estimation for shallow crack specimens.
    In the present work, another way of calculating CTOD was developed by the numerical investigation of single edge notch bend, SE(B), specimens with various a0/W. Non-linear crack opening profiles were dominant for smaller a0/W specimens than 0.2 due to plastic deformation behind their crack tips, or a straight crack opening profile deviated from a triangle side assumed by the plastic hinge model for a0/W =0.7. In this paper, a correction factor of the plastic component of clip gauge displacement, CVp, was proposed considering non-linear crack opening and crack profile deviation, and it was demonstrated that CVp gave a better CTOD estimation than current CTOD formulae such as BS7448 and ASTM E1820 for the wide range of a0/W.
    x

    Readers Who Read This Article Also Read

    1. A unified numerical model of MIG welding process QUARTERLY JOURNAL OF THE JAPAN WELDING SOCIETY Vol.34(2016), No.1
    2. Modeling of Gas Metal Arc Welding Process Using an Analytically Determined Volumetric Heat Source ISIJ International Vol.53(2013), No.4
    3. Mineral Phase Formation and Zinc Removal during Sintering of Filter Cake Wastes ISIJ International Vol.56(2016), No.4

Article Access Ranking

12 Dec. (Last 30 Days)

  1. Factors to Determine Inclusion Compositions in Molten Steel during the Secondary Refining Process of Case-Hardening Steel ISIJ International Vol.56(2016), No.11
  2. Preface to the Special Issue Entitled “Dynamics in Solid-Liquid Coexistence and Controlling of Segregation during Solidification” Tetsu-to-Hagané Vol.103(2017), No.12
  3. Convergent-Divergent Injection Lance for the Enhancement of Combustion Efficiency of Pulverized Coal at Blast Furnace Tetsu-to-Hagané Vol.103(2017), No.11
  4. Real-time Analysis on Non-uniform Heat Transfer and Solidification in Mould of Continuous Casting Round Billets ISIJ International Vol.44(2004), No.10
  5. Effect of Cold Rolling before Hydrogen Reduction on Reduction Behavior and Morphologies of Oxide Scale on Hot-rolled Low-carbon Steel ISIJ International Vol.57(2017), No.11
  6. Viscosity of Heterogeneous Silicate Melts: Assessment of the Measured Data and Modeling ISIJ International Vol.57(2017), No.11
  7. In Situ Observations of Tensile and Compressive Deformations in Semi Solid Metallic Alloys Using Time-resolved X-ray Imaging Tetsu-to-Hagané Vol.103(2017), No.12
  8. Modeling of Gas-Steel-Slag Three-Phase Flow in Ladle Metallurgy: Part I. Physical Modeling ISIJ International Vol.57(2017), No.11
  9. Effect of MnO on High-Alumina Slag Viscosity and Corrosion Behavior of Refractory in Slags ISIJ International Vol.57(2017), No.11
  10. An Online Rolling Model for Plate Mill Using Parallel Computation ISIJ International Vol.57(2017), No.11

Search Phrase Ranking

12 Dec. (Last 30 Days)

  1. blast furnace
  2. 鉄と鋼
  3. blast furnace permeability
  4. blast furnace productivity
  5. camp-isij
  6. carbon composite iron oxide
  7. blast furnace hearth corrosion
  8. breakout continuous casting
  9. breakout prediction, continuous casting
  10. deoxidation equilibrium