非圧縮性 SPH法を用いた TIG溶接における溶融池形成シミュレーション
伊藤 真澄, 伊澤 精一郎, 福西 祐, 茂田 正哉
pp. 213-222
DOI:
10.2207/qjjws.32.213抄録
An incompressible SPH (Smoothed Particle Hydrodynamics) method was applied to numerical simulation of the thermofluid behavior of an anode metal in a TIG (Tungsten Inert Gas) welding process, taking account of the phase change of the anode material, free surface deformation of the liquid, and four dominant flow-driving forces, namely, gradient of surface tension (Marangoni effect), gas drag on the liquid surface, buoyancy, and electromagnetic force (Lorentz force). The present method successfully simulated that the direction of the temperature gradient of surface tension causes a significant difference of weld penetration. The penetration geometries of the present results agreed with those of actual welding processes. It is shown that the particle method used in this study is applicable to arc welding simulations.
他の人はこちらも検索
溶接学会論文集 Vol.31(2013), No.4
溶接学会論文集 Vol.30(2012), No.2
溶接学会論文集 Vol.30(2012), No.1