論文検索サイト

日本エネルギー学会誌 Vol. 79 (2000), No. 10

ISIJ International
belloff
オンライン版ISSN: 1882-6121
冊子版ISSN: 0916-8753
発行機関: The Japan Institute of Energy

Backnumber

  1. Vol. 103 (2024)

  2. Vol. 102 (2023)

  3. Vol. 101 (2022)

  4. Vol. 100 (2021)

  5. Vol. 99 (2020)

  6. Vol. 98 (2019)

  7. Vol. 97 (2018)

  8. Vol. 96 (2017)

  9. Vol. 95 (2016)

  10. Vol. 94 (2015)

  11. Vol. 93 (2014)

  12. Vol. 92 (2013)

  13. Vol. 91 (2012)

  14. Vol. 90 (2011)

  15. Vol. 89 (2010)

  16. Vol. 88 (2009)

  17. Vol. 87 (2008)

  18. Vol. 86 (2007)

  19. Vol. 85 (2006)

  20. Vol. 84 (2005)

  21. Vol. 83 (2004)

  22. Vol. 82 (2003)

  23. Vol. 81 (2002)

  24. Vol. 80 (2001)

  25. Vol. 79 (2000)

  26. Vol. 78 (1999)

  27. Vol. 77 (1998)

  28. Vol. 76 (1997)

  29. Vol. 75 (1996)

  30. Vol. 74 (1995)

  31. Vol. 73 (1994)

  32. Vol. 72 (1993)

  33. Vol. 71 (1992)

日本エネルギー学会誌 Vol. 79 (2000), No. 10

省エクセルギー型高温空気燃焼

谷口 博, 森田 光宣, 新井 紀男, 小幡 正一

pp. 1006-1010

抄録

An exergy saving type combustion technique has been developed by introducing high temperature air burner which has a regenerative heat recovery with honeycomb type ceramics and frequent switching device to keep a level of 1000 deg. C and over. However, NOx emission will be increased by this high temperature air combustion and has to be decreased by some technique which is held by low oxygen combustion method. The low oxygen combustion can be obtained by well mixing of fresh air and combustion gas. In this paper, we can realize that the exergy value is decreased by combustion process and increased by heat recovery process. Therefore, the exergy saving process in combustion may be achieved by heat recovery from exhaust gas to fresh air. Recently, we have many application of exergy saving type high temperature air combustion for some industrial furnaces. When we introduce the above high temperature air combustion, it may be possible to reduce about 30% ener-gy for comparing with existing type of furnace. Furthermore, it is clear that the steam boiler or chemical reactor furnace may be constructed by radiation part only. So, we have many advantages of energy and resource saving results which are derived from high temperature air combustion.

他の人はこちらも検索

ブックマーク

SNSによる共有

論文タイトル

省エクセルギー型高温空気燃焼

メタンハイドレート中のメタンとCO2の置換速度

乗京 逸夫, 広浜 誠也, 西田 信雄

pp. 1011-1019

抄録

Injection of liquid CO2 in hydrate layers of natural gas is a promising tech-nique to recover CH4 simultaneously segregating CO2 from the biosphere. This work exam-ined the rate of the conversion of CH4-hydrate immersed in liquid CO2 to CO2-hydrate in a tem-perature range of 274-281K and the pressure range of 4-10MPa for 800-1600h.
The conversion was on going even at the end of every experiment. Mass-transfer in hydrate solid is presumed to dominate the conversion rate. The solute mobility of methane and CO2 in hydrate solid was determined for feasibility studies of this technique in the future. The solute mobility raised as the temperature increased, it decreased as the total pressure increased.
Significantly high conversion rate was observed when the total pressure was set below the dissociation pressure of CH4-hydrate and above the hydrate forming pressure of CO2.

他の人はこちらも検索

ブックマーク

SNSによる共有

論文タイトル

メタンハイドレート中のメタンとCO2の置換速度

Ti-Ni-Cu形状記憶合金の有効ひずみエネルギーに及ぼす冷間加工率の影響

佐久間 俊雄, 岩田 宇一, 越智 保雄, 宮崎 修一

pp. 1020-1027

抄録

A shape memory alloy is receiving attention in various fields. In areas such as engineering and medicine, its applications are being studied and practically used. Authors have proposed a reciprocating heat engine inorporating shape memory alloy wires. Ti-Ni alloy is practically used because it is superior to cyclic behaviors and a corrosive resistance. However, in order to enlarge the further applications, some improvements in cyclic behaviors and fatigue life are necessary. The purpose of the present paper is to investigate the effect of the cold working ratio on the cyclic behavior of functions and strain energy in Ti-41.7 at % Ni-8.5 at % Cu alloy wires. Results show that the increase of the cold working ratio is effective for improvement of functions such as recovery stress and irrecoverable strain, And the available strain energy and the thermal efficiency per cycle increase with increasing in cold working ratio. Furthermore, the degradation of available strain energy decreases with increasing in cold working ratio. However, the total available strain energy to failure increases with the decrease in cold working ratio.

他の人はこちらも検索

ブックマーク

SNSによる共有

論文タイトル

Ti-Ni-Cu形状記憶合金の有効ひずみエネルギーに及ぼす冷間加工率の影響

この機能はログイン後に利用できます。
下のボタンをクリックしてください。

詳細検索

論文タイトル

著者

抄録

ジャーナル名

出版日を西暦で入力してください(4桁の数字)。

検索したいキーワードを入力して下さい