Thermal Stability and Hydrogen Permeation of Ni42Zr30Nb28−xTax Amorphous Alloys
J. B. Qiang, W. Zhang, S. Yamaura, A. Inoue
pp. 1236-1239
Abstract
The thermal stability and hydrogen permeability of Ni42Zr30Nb28−xTax (x=0,7,14,21,28) amorphous alloys have been studied in the present work. The substitution of Nb by Ta was found to be effective in improving the thermal stability of the Ni42Zr30Nb28 amorphous alloy. The onset crystallization temperature of the Ni42Zr30Nb28−xTax amorphous alloys was increased by 58 K from 807 K for Ta-free composition to 865 K for Ni42Zr30Ta28 due to the Ta addition. The hydrogen permeability of the Pd-coated Ni42Zr30Ta28 amorphous membrane was measured to be about 0.86×10−8 mol·m−1·s−1·Pa−1⁄2 at 673 K, which is slightly lower than that of the Pd-coated Ni42Zr30Nb28 amorphous membrane. The hydrogen permeability of the Ni42Zr30Ta28 amorphous membrane was revealed to be more temperature dependent in comparison to that of the reference membrane. The higher thermal stability combined with good hydrogen permeability give rise to the possibility of the practical use for Ni42Zr30Ta28 amorphous alloy as a dense metal membrane operating at higher temperatures.
Readers Who Read This Article Also Read
MATERIALS TRANSACTIONS Vol.50(2009), No.4
MATERIALS TRANSACTIONS Vol.50(2009), No.7
MATERIALS TRANSACTIONS Vol.50(2009), No.7