Simulation and Application of Top-blowing Lance with Various Inclination Angles in Decarburization Ladle Furnace
Fuhai Liu, Yayu Wu, Sibao Zeng, Rong Zhu, Kai Dong, Guangsheng Wei, Yitong Pan
抄録
To reduce the production costs of ultra-low carbon steel, an oxygen lance has been employed in a 150 t decarburization ladle furnace. This study conducted both water experiments and numerical simulations to examine the flow field characteristics and stirring effects of the top-blowing lance at various inclination angles of 4°, 6°, 8°, and 10°. The results indicated that a smaller inclination angle enhanced the mixing effect and impaction depth of the molten bath, whereas the impaction diameter exhibited a contrasting trend. The behavior of the oxygen multi-jets suggested that a smaller inclination angle mitigated the loss of kinetic energy, thereby improving impaction ability. As the depth of the molten bath increased, the average velocity of the molten bath section displayed a trend characterized by an initial rapid decrease, followed by a gradual decline, and culminating in a subsequent rapid drop. In industrial application research, the 4° oxygen lance resulted in a shorter decarburization time compared to the 8° oxygen lance. This reduction in decarburization time led to decreased heat energy loss due to the heat-absorbing effect of ambient gas, which further enhanced the end-point temperature of the molten bath.