- TOP
- SICE Journal of Control, Measurement, and System Integration
- Vol. 10 (2017), No. 1
SICE Journal of Control, Measurement, and System Integration Vol. 10 (2017), No. 1
ONLINE ISSN: | 1884-9970 |
PRINT ISSN: | 1882-4889 |
Publisher: | The Society of Instrument and Control Engineers |
Backnumber
-
Vol. 13 (2020)
-
Vol. 12 (2019)
-
Vol. 11 (2018)
-
Vol. 10 (2017)
-
Vol. 9 (2016)
-
Vol. 8 (2015)
-
Vol. 7 (2014)
-
Vol. 6 (2013)
-
Vol. 5 (2012)
-
Vol. 4 (2011)
-
Vol. 3 (2010)
-
Vol. 2 (2009)
-
Vol. 1 (2008)
Keyword Ranking
22 Dec. (Last 30 Days)
SICE Journal of Control, Measurement, and System Integration Vol. 10 (2017), No. 1
Bilateral Control of Flexible Master-Slave Arms with Time-Varying Delay Affected by Contact Force from Obstacle
Masaharu YAGI, Yuichi SAWADA
pp. 2-9
DOI:
10.9746/jcmsi.10.2Abstract
A bilateral control system for flexible master-slave arms with time-varying delay affected by contact force from an obstacle is considered in this study. The proposed bilateral control system is constructed using a rigid master arm, a flexible slave arm actuated by a high-geared servomotor, and a communication network that causes the time-varying delay. The flexible slave arm is affected by contact force from the obstacle during motion. PD and PDS controllers are designed for controlling the rigid master and flexible slave arms, respectively. A Lyapunov function is used in order to prove the stability and passivity of the proposed system. Finally, performance of the proposed bilateral control system is verified by numerical simulations.
Development of High-Performance Compact On-Board Computer for Micro/Nano-Satellites with Software Resource Sharing Framework
Tomohiro NARUMI, Shinji TAKANO, Shinichi KIMURA
pp. 10-15
DOI:
10.9746/jcmsi.10.10Abstract
Due to advances in mission complexity and increased requirements for autonomous control of small satellites, high-level computing performance of on-board computers, as well as the necessary software implementation to maintain essential functionality, is more frequently required for small satellites. To satisfy these requirements, we developed a high-performance and compact on-board computer for micro and nano-satellites using commercial off-the-shelf (COTS) components including a structure to increase the reliability by sharing software to enhance reusability. The capability of small satellites can be dramatically improved by having common standards for high computing performance and a low-cost platform for the on-board computers. Additionally, the mission potential of small satellites can then be expanded. When the same platform is utilized recursively, the reliability of the platform will increase through repeated verification. In this paper, we describe the concept of a high-performance, low-cost on-board computer system using COTS devices, the sharing of software resources, and a practical on-orbit evaluation of the system.
Inverse Optimal and Asymptotically Stable Adaptive Consensus Control of Multi-Agent Systems Based on H∞ Control Criterion
Yoshihiko MIYASATO
pp. 16-24
DOI:
10.9746/jcmsi.10.16Abstract
Design methods of asymptotically stable adaptive consensus control of multi-agent systems composed of the first-order and the second-order regression models are presented based on inverse optimal control criterion. The proposed control schemes are derived as solutions of certain H∞ control problems, where estimation errors of tuning parameters are regarded as external disturbances to the process. The resulting control systems are robust to uncertain system parameters and the desirable consensus tracking is achieved asymptotically via adaptation schemes and L2-gain design parameters together with an introduction of a generating model of a leader.
Application of Adaptive Sliding Mode Control with an Ellipsoidal Sliding Surface for Vehicle Distance Control
Taichi MIZOSHIRI, Yasuchika MORI
pp. 25-31
DOI:
10.9746/jcmsi.10.25Abstract
This paper proposes a sliding mode control with an ellipsoidal sliding surface for vehicle distance control. The performance of two different sliding surfaces, namely ones that are ellipsoidal and linear, is evaluated under the same conditions. Each controller, regardless of sliding surface, is designed to achieve a similar level of control performance. It is shown through simulation that the sliding mode control with the ellipsoidal sliding surface proposed by the authors has advantages over conventional sliding mode control with a linear sliding surface, in that it is smoother and has lower energy consumption. Furthermore, a boundary layer width adaptation law is applied to prevent chattering.
Derivation of Robust Stability Ranges for Disconnected Region with Multiple Parameters
Tadasuke MATSUDA
pp. 32-38
DOI:
10.9746/jcmsi.10.32Abstract
The aim of this paper is to give an extension of the paper [T. Matsuda et al. Proc. 33rd IASTED Modelling, Identification and Control, 809-004, 2014], which gives a robust stability condition for a system with disconnected stability regions. The considered system depends on only one uncertain parameter. In this paper, an explicit algorithm to derive the stability ranges for disconnected stability regions is given. We also extend the result to the case that the system depends on multiple uncertain parameters. A numerical example shows that the proposed method can be applied to robust stability analysis of the lateral dynamics of an aircraft even if all the coefficients of the characteristic polynomial vary. The numerical example also shows that the stability ranges derived by the proposed method are larger than those by a former method.
Article Access Ranking
22 Dec. (Last 30 Days)
-
Wettability of CaS against molten iron at 1873 K
ISIJ International Advance Publication
-
Precipitation Behavior of MnS from Molten Iron to Al2O3 during Solidification
Tetsu-to-Hagané Advance Publication
-
Reduction and Melting Behaviors of Iron Oxide Composite with Carbon Deposited Using CO-CO2-H2 Mixed Gas
ISIJ International Advance Publication
-
Perspectives on the Promising Pathways to Zero Carbon Emissions in the Steel Industry toward 2050
ISIJ International Advance Publication
-
In-situ Observation of Precipitation and Growth of MnS Inclusions during Solidification of a High Sulfur Steel
ISIJ International Vol.64(2024), No.14
-
In-situ Observation of Inclusion Formation Behaviors during Solidification Process Using Model Alloy
Tetsu-to-Hagané Advance Publication
-
Evaluation method for the three-dimensional behavior of bubbles in a liquid metal under horizontal magnetic field using ultrasonic tomography
ISIJ International Advance Publication
-
Effect of Heating Rate on the Non-Isothermal Hydrogen Reduction of Hematite Pellets
ISIJ International Advance Publication
-
Effects of Manganese on Microstructure and Work-hardening Behavior of Low-carbon Lath Martensitic Steel
ISIJ International Advance Publication
-
Chemical and Mechanical Factors on Phosphorus Dissolution Behavior from P-concentrated Slag
ISIJ International Vol.64(2024), No.14
You can use this feature after you logged into the site.
Please click the button below.